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In August1900 at the occasion of of the second International Congres of Mathematicians, in
Paris that year, David Hilbert, then all of 38 years young, gave his lecture on Mathematical
Problems. That lecture and even more the written version of it has been, or so it would seem, of
great influence on the development of mathematics in the 20-th century. Partly because of the
stature of the lecturer which was still to grow considerable in the decades to come, partly
because the problems were well chosen 7, partly because they breathed a coherent view of what
mathematics is all about, and perhaps most of all because of the incurable optimism in it all, a
flat denial of Dubois-Reymond’s “Ignoramus et ignoramibus”?

The published version, see [48, 49], contains 23 problems. Of these Hilbert discussed only 10 in
the lecture itself, viz numbers 1, 2, 6, 7, 8, 13, 16, 19, 21, 22. The 23 problems, together with
short, mainly bibliographical comments, are briefly listed below using the short title descriptions
from [49].

Three general references are [1] (all 23 problems), [14] (all problems except 1, 3, 16), [56]
(all problems except 4, 9, 14; special emphasis on developments from 1975-1992).

Two semipopular accounts of the problems, their solutions or solution attempts, and the
people who worked on them are [38, 115]. The account below is mostly based on [46], and the
references quoted there.

Problem 1. Cantor’s problem on the cardinal number of the continuum.
More colloquially also known as the continuum hypothesis. It can be stated as
“Every uncountable subset of the real numbers, R, has the same cardinality as R,
or as 2% =R, .

Solved by K Godel, [36] and P J Cohen, [18] in the (unexpected) sense that the continuum
hypothesis is independent of ZFC, the Zermelo-Frankel axioms of set theory complete with the
axiom of choice. This means that one can add the continuum hypothesis to ZFC without
introducing inconsistencies (that were not already present) (G&del); one can also add the
negation of the continuum hypothesis (Cohen) without introducing inconsistencies. Gédel and
Cohen also showed that the axiom of choice is independent of ZF.

Perhaps even more important than the solution of the problem itself are the techniques of
Cohen forcing and Boolean valued models that resulted. These have ‘uncountably’ many
applications by now.

' There is no way to be absolutely sure of course. One can hardly run the 20-th century again to see how
things would have gone without that lecture.

? Difficult, certainly, but not seemingly impossibly so, and often quite attractive. Hilbert worked hard for
a year or so on his lecture. It is not really difficult to pose a list of nearly impossible problems but that is not what

Hilbert did.

* We do not know and we shall not know (are not supposed to know).
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Problem 2. The compatibility of the arithmetical axioms.

Solved (in a negative sense) by K Godel, [35]. This is the socalled Godel incompleteness
theorem. It roughly says that in every system that is strong enough to do a reasonable amount of
arithmetic there are statements that are not provable within that system and whose negation is
also not provable. For a popular account, see [74]. Positive results (using techniques that Hilbert
would not have allowed) are due to G Gentzen (1936) and P S Novikov (1941), see [1, 14].

Problem 3, The equality of the volumes of two tetrahedra of equal bases and equal
altitudes.

More precisely the problem was to show that two such polyhedra can be transformed into
each other by cutting and pasting (as is the case for triangles, the analogous problem in
dimension 2). Whence the name ‘scissors congruence problems’.

Solved in the negative sense by Hilbert’s student Max Dehn in 1900, [25] (actually before
Hilbert’s lecture was delivered) and (at least partially) by R. Bricard in 1896, [13]. As it turned
out, there is besides the volume one more quantity that remains invariant under cutting and
pasting, the Dehn invariant. In higher dimensions the same problem can be studied and there are
the Hadwiger invariants. In dimension 3 the Dehn invariant is the only extra invariant besides
volume, i.e. tetrahedra with the same Dehn invariant and the same volume are scissors
congruent, Sydler (1965), see [95].

Problem 4. Problem of the straight line as the shortest distance between two points.

This problem asks for the construction of all metrics in which the usual lines of projective
space (or pieces of them) are geodesics. The first work on this was by Hilbert’s student G Hamel,
[42]. In particular he pointed out that the problem needed to be precisized and one should ask for
all Desarguesian spaces in which straight lines are the shortest distances between points®.
Nowadays, the problem is considered (basically) solved in the form of the following
(generalized) Pogorelov theorem, [84, 85, 105]:

Any n-dimensional Desarguesian space of class C***, n > 2, can be obtained by the BB
construction.

Here the BB construction is an integral geometry based technique for obtaining
Desarguesian spaces due to Blaschke, [12], and Busemann, [15]. The differentiability class
restriction is necessary; otherwise there are Desarguesian spaces that do not come from the BB
construction, see [105], which is also recommended as a very good survey on the 4-th problem.

Problem 5. Lie’s concept of a continuous group of transformations without the assumption
of the differentiability of the functions defining the group.

Solved in 1952 by Gleason and Montgomery and Zippin, [34, 70], in the form of the
theorem “Every locally Euclidean topological group is a Lie group and even a real analytic
group”. For a much simplified (but nonstandard) treatment see [50]. The cases of compact
topological groups and commutative topological groups were handled earlier by Pontryagin
(1934) and von Neumann (1933).

This is perhaps the only one of Hilbert’s problems that gave not rise to a host of subsequent
investigations and problems and concepts. This happens but rarely. True, as Davis writes in his
discussion of the first problem in [14], after Godel’s work there was some 20 years of stagnation
in set theory. But Godel’s work did set people thinking about computability, recursiveness and
the like, a most important development that prepared things for modern computer science and
vast new parts of logic.

Problem 6. Mathematical treatment of the axioms of physics.

Very far from solved in any way, though there are (many bits and pieces of) axiom systems
that have been investigated in depth. See [113] for an extensive discussion of Hilbert’s own
ideas, von Neumann’s work and much more. There are for instance the Wightman axioms (also
called Garding-Wightman axioms) and the Osterwalder-Schrader axioms of quantum field

* Otherwise there are two many solutions. ‘Desarguesian’, of course, refers to the wel known Desargues

theorem in plane projective geometry.
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theory. There is von Neumann’s axiomatization of quantum mechanics, following work of
Nordheim and Hilbert himself. More recently there is the definition of topological field theories
and conformal field theories, sources of very fruitful interactions between mathematics and
physics, [63, 96, 99, 100, 109, 114]. Note that these are not really axiomatizations from the
ground up (like Euclidean gerometry) but are more aptly termed relative axiomatizations in that
they take an existing body of knowledge (like, say, differential topology) as given.

Quite early in the 20-th century, in direct response to Hilbert’s questions, there were
Carathéodory’s axiomatizations of thermodynamics (1909) and of special relativity (1924),
Hamel’s axiomatization of mechanics (1903); and another independent axiomatization of special
relativity by Robb (1914). And finally there was von Mises’ axiomatization of probability (a
field specifically mentioned by Hilbert in his elucidation of problem 6) followed by the definitive
axiomatization by Kolmogorov, [60].

Preliminary to the axiomatization of quantum mechanics there was the development of
Hilbert space, operators, infinite matrices, eigenvalues, integral equations, ... . According to [89],
p 183, Hilbert remarks that he developed this theory on purely mathematical grounds and even
called it spectral analysis without any idea that it would later be much related to the real spectra
of physics.

Problem 7. Irrationality and transcendence of certain numbers.
The numbers in question are of the form o with o algebraic and B algebraic and

irrational. For instance 2¥> amd e” =i, Solved in 1934 by A.O.Gel’fond and Th.Schneider
(the Gel’fond-Schneider theorem). For the general method, the Gel’fond-Baker method, see e.g.
[108]. A large part of [31] is devoted to Hilbert’s seventh problem and related questions.

It is interesting to note that in a lecture of Hilbert in 1919 he remarked that he was
optimistic to see the Riemann hypothesis solved in his lifetime, that perhaps the youngest
member in the audience would see the solution of the Fermat problem, but that no one in the

audience woud see the transcendence of 2V2.

Problem 8. Problems of prime numbers.

This one is usually known as the Riemann hypothesis and is the most famous and important
of the unsolved conjectures in mathematics. The Riemann zeta-function of the complex variable

s 1s given for Re(s)>1by ¢(s)= Z:;rlz"s and it has an analytic continuation to the whole

s-plane to a meromorphic function with one simple pole at s = -1 with residue 1. There are
zeros for s =-2,—4,--- . These are referred to as trivial zeros. The Riemann hypothesis now says
that all other zeros are of the form s =4 +i7. It is known that the first 1.5 billion zeroes
(arranged by increasing positive imaginary parts) are simple and lie on the critical line

Re(s) =4, [110]; it is also known that more than 40% of the zeros satisfy the Riemann
hypothesis, [19, 64, 101].

The zeta function in algebraic geometry, ¢, (s), is a meromorphic function of a complex
variable s that describes the arithmetic of algebraic varieties, X, over finite fields or of schemes
of finite type over the integers. If X is Spec(Z) one recovers the Riemann zeta function and if
X 1s of finite type over Spec(Z) there result the Dedeking zeta functions for the corresponding
number fields.

A. Weil formulated a number of far ranging conjectures concerning zeta functions of
varieties over finite fields (and proved them for curves). After the necessary cohomological tools
for this were developed by A Grothendieck, M Artin and J-L Verdier these conjectures were
proved by P Deligne, [27]. See [80] for much more detail.

Problem 9. Proof of the most general law of reciprocity in any number field.
Consider the question of whether an integer a is a quadratic residue modulo a prime
number p or not, where a is not divisible by p. Le. the question is whether a can be written

in the form a =b* +kp for some integers b and k or not. In the first case write (f)—) =1, in the

second (%) = —1. This is the Legendre symbol. The Gauss reciprocity theorem now says that for
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two different odd prime numbers (%)(%) = (-)FF,

E Artin in 1927 gave reciprocity laws for general number fields; [6]. A great generalization
of the Gauss reciprocity law had already been established by Hilbert himself in 1895, 1896. See
[104] for more details and also for information as to how the question of reciprocity laws lead to
(Abelian) class field theory, the subject of problem 12, see below. The analogous question of
reciprocity laws for function fields was settled by Shafarevich in 1948, the Shafarevich
reciprocity law, see [102].

Problem 10. Determination of the solvability of a Diophantine equation.
A Diophantine equation in a finite number of variables is an equation P(x,---,x,)=0

where P is a polynomial over the integers. It is solvable if there are integral solutions. For
instance the Fermat equation x" +y" = z" for a given natural number n which has infinitely

many solutions for n=1,2 and no solutions for n > 3. The problem asks for a finite sequence of

tests (that can be applied to any such equation) to determine whether a Diophantine equation has
solutions or not.

The solution is negative: there is no such algorithm, Matiyasevich (1979). This is a fairly

immediate consequence of the main theorem in the field:
Every listable set of natural numbers is Diophantine.

See [23] for a description of the various concepts (though the meaning is intuitively rather clear).

One consequence of the main theorem is that there exists an integral polynomial such that
the positive values of this polynomial on the natural numbers are precisely the prime numbers,
[87], a result that made many mathematicians doubt that the main theorem, at that time still a
conjecture, could possibly be true.

For a discussion of various refinements and extensions of problem 10, see [83].

Problem 11. Quadratic forms with any algebraic numerical coefficients.
This asks for the classification of quadratic forms over algebraic number fields. More
precisely, a quadratic form over a (number) field K is an expression of the form

q= Zl_sjq,.‘ ;% x; in the variables x,,---,x, with coefficients in K. Two such forms ¢, ¢’ are

equivalent if there is an invertible linear substitution x; = ZI,., ;%; such that

q’(x{,---,x))=q(x,,---,x,). The problem is to classify quadratic forms up to this equivalence.
This is solved by the Hasse-Minkovsky theorem and the Hasse invariant, [44]. The Hasse-
Minkovsky theorem says that two quadratic forms over a number field X are equivalent if and
only if they are equivalent over all of the local fields K, for all primes p of K. For instance
for K =Q, the rational numbers, two forms over Q are equivalent if and only if they are
equivalent over the extensions R, the real numbers, and the p-adic numbers Q, for all prime
numbers p°. This reduces the probelm to classification over local fields. And that is handled by
the Hasse invariant (besides rank and discriminant). It is interesting to note that the definition of

the Hasse invariant uses the Hilbert symbol and thus links to reciprocity (problem 9). See [68]
and [76] for a great deal more informaton on the theory of quadratic forms.

Problem 12. Extension of Kronecker’s theorem on Abelian fields to any algebraic realm of
rationality.
The Kronecker-Weber theorem says that the maximal Abelian (meaning Abelian Galois

group) extension Q“ of the rational numbers is obtained by adjoining to Q all the roots of
unity. This has two parts: on the one hand it gives an explicit contruction of Q®; on the other it

calculates the Galois group Gal(Q* / Q). The second part has been nicely generalized for any
number field (and also more generally). This is the topic of class field theory, which started with

’ The real numbers are the completion of the rational numbers for the standard absolute value; the p-adic

=vplartvy(b)

numbers are the completion for the non-Archimedean norm lla/ b li=2 , which makes a rational number

alb, (ab)=1, small if the numerator is divisible by a large power of the prime p.
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Takagi, [106]. Since then the subject has gone through 6 or 7 incarnations (revolutions). See [7,
17, 45,75, 112] for some of these.

The first half fared less well (explicit generation) except for the ‘complex multiplication’
case and local fields, [67]. But see also [51].

Nowadays there is great interest in and great progress on ‘non-Abelian class field theory’ in
the form of the conjectured Langlands correspondence. In the local case (now proved for GL,)

this is a correspondence between representations of degree r of Gal(K*? / K)S, or rather a
dense subgroup W, of it called the Weil group’ and certain representations of GL,(K). For the
global case GL, (K) isreplaced by GL (A) where A is the ring of adéles of K. The
correspondence is also supposed to satisfy a number of strong extra properties. In case r =1
Abelian class field theory is recovered. No less than 4 invited lectures at the latest ICM, [65]
were about the Langlands corespondence. Also there have been five Séminaire Bourbaki reports

on the matter in recent years, giving another indication of how important the matter is considered
to be, [16, 32, 43, 62].

Problem 13. Impossibility of the solution of the general equation of the 7-th degree by
means of functions of only two variables.

This problem is nowadays seen as a mixture of two parts: a specific algebraic (or analytic)
one concerning equations of degree 7, which remains unsolved, and a ‘superposition problem’:
can every continuous function in n variables be written as a superposition of continuous
functions of two variables. The latter problem was solved by V I Amol’d and A N Kolmogorov
in 1956, 1957, [3, 61] : each continuous function of n variables can be written as a composite
(superposition) of continous functions of two variables.

A composite function is one obtained by substituting other functions for the variables in the first
functions. So, as an example, f(x,y,z)= F(g(x,y),h(z,k(y,z))) is afunction of three variables
that is a composite of functions of two variables. Thus, for instance, all rational functions in any
number of variables, can be obtained as composites of x+y, x—y, xy, x/y, The picture
changes drastically if differentiability or analyticity conditions are imposed. For instance, there

are analytic functions of n variables that cannot be written as composites of analytic functions
of fewer variables.

The reason that the two parts of the problem occur together is that by Tschirnhausen
transformations the general equation of degree 7 can be reduced to something of the form
X"+ xX* + yX* +zX +1= 0 (but no further) and the solutions of this equation as functions of
x,y,z were considered to be candidates for functions of three variables that cannot be written as
composites of functions of two variables.

Problem 14. Proof of the finiteness of certain complete systems of functions.
The precise form of the problem is as follows: Let K be a field in between a field k and
the field of rational functions k(x,,x,, -, x,) in n variables over k: k ¢ K c k(x,,--,x,). Is it true

that K Mk[x,,---,x,] is finitely generated over k. The motivation came from positive answers

(by Hilbert for instance) in a number of important cases where there is a group, G, acting on k"
and K is the field of G-invariant rational functions. A counterexample, precisely in this setting
of rings of invariants, was given by M Nagata in 1959, [73]. However in the invariants case finite
generation is true if the group is reductive; this is for instance the case if G is semisimple and &
is of characteristic zero, [72].

Problem 15. Rigorous foundation of Schubert’s enumerative calculus.

The problem is to justify and precisize H Schubert’s ‘principle of conservation of numbers’
under suitable continuous deformations. Mostly intersection numbers. For instance to prove
rigorously that there are indeed, see [97], 666 841 048 quadric surfaces tangent to 9 given
quadric surfaces in space. There are a great number of such principles of conservation of

¢ K™ s the separable closure of K;if K is of charactieristic zero this is the algebraic closure.

’ Not to be confused with the Weyl group of a simple Lie algebra.
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numbers in intersection theory, [21], and cohomology and differential topology. Indeed one
version of another of this idea is often the basis of definitions in singular cases.

In spite of a great deal of progress, see loc. cit., there remains much to be done to obtain a
true enumerative geometry such as Schubert dreamt of.

And in fact more is required than just a good intersection theory that takes care of
multiplicities. One also needs to give the collection of, say, all quadric surfaces in space the
structure of something like an algebraic variety, i.e. something to which intersection theory can
be applied. This is a fundamental subfield of algebraic geometry, starting with the question,
which goes back to Riemann, as to on how many parameters a given kind of structure depends
(how many moduli are needed in the phraseology of the 19-th century, which explains the
terminology ‘moduli space’ in algebraic geometry).

Problem 16. Problem of the topology of algebraic curves and surfaces.

Even in its original formulation, this problem splits into two parts.

First, the topology of real algebraic varieties. For instance an algebraic real curve in the
projective plane splits up in a number of ovals (topological cicles) and the question is which
configurations are possible. For degree 6 this was finally solved by D A Gudkov (1970), see [40]
for this and more. There are severe constraints on the configurations that are possible. Early
important work on this is due to V Ragsdale, [88]. However, her conjectures have been fairly
recently disproved by Itenberg and Viro, [55].

The second part concerns the topology of limit cycles of dynamical systems. A first
problem here is the Dulac conjecture on the finiteness of the number of limit cycles of vector
fields in the plane. For polynomial vecor fields this was settled in the positive sense by Yu S
[I’yashenko (1970). See [4, 52, 53, 94] for this and much more.

Problem 17. Expression of definite forms by squares.

The problem is the following. Consider a rational function of n variables over the reals
which in all points where it is defined takes nonnegative values. Does it follow that it can be
written as a sum of squares (of rational functions). This was solved by E Artin in 1927, [5]. To
solve the problem Artin invented the theory of formally real fields,. which has meanwhile other
applications as well. For a definite function on a real irreducible algebraic variety of dimension d

the Pfister theorem says that no more than 2¢ terms are needed to express it as a sum of squares,
[82].

Problem 18. Building up of space from congruent polyhedra.
This problem has three parts (in its original formulation).

(18a). Show that there are only finitely many types of subgroups of the group E(n) of

isometries of R™ with compact fundamental domain. Solved in 1910 by L Bieberbach, [11]. The
subgroups in question are now called Bieberbach groups.

(18b). Tiling of space by a single polyhedron which is not a fundamental domain as in
(18a). More generally also nonperiodic tilings of space. A monohedral tiling is a tiling in which
all tiles are congruent to one fixed set T. If moreover the tiling is not one that comes from a
fundamental domain of a group of motions one speaks of an anisohedral tiling. In one sense
Hilbert’s problem 18b was settled by K Reinhardt (1928), [90], who found an anisohedral tiling

in R®, and H Heesch (1935) who found a non-convex anisohedral polygon in the plane that
admits a periodic monohedral tiling, [47]. The tile of Heesch was actually produced as a roof tile
and these tiles form the covering of the Gottingen Rathaus.

There also exists convex anisohedral pentagons, [57].

On the other hand, this circle of problems is still is a very lively topic today, see [98] for a
recent survey.

For instance, the convex polytopes that can give a monohedral tiling of R have not yet
been classified, even for the plane.

One important theory that emerged is that of the Penrose tilings and quasi-crystals, see
[24]. As another example of one of the problems that emerged, it is unknown at this time (2003)
which polyominos tile the whole plane, [37]. A polyomino is a connected figure abtained by
taking n identical unit squares and connecting them along common edges.
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(18c) Densest packing of spheres. Still unsolved in general. The densest packing of circles
in the plane is the familiar hexagonal one, A Thue (1910, completed by L Fejes Téth in 1940),
[30, 107]. Conjecturally the densest packing in three space is the lattice packing As, the face
centred cubic. This is the Kepler conjecture of 1610. This packing is indeed the densest lattice
packing (Gauss), but conceivably there could be denser nonlattice packings (as can happen in
certain higher dimensions). In 1998 T C Hales and S P Ferguson announced a proof of the
Kepler conjecture. However, only two of the eight papers involved have sofar been published,
both in 1997. The announced proof relies heavily on the computer checking of some 5000
special cases, a not dissimilar situation as 30 years ago with regard to the four colour conjecture.
Still there are grounds that the proof will turn out to be substantially correct, [78].

The Leech lattice is conjecturally the densest packing in 24 dimensions. The densest lattice
packings in dimensions 1-8 are known. In dimensions 10, 11, 13 there are packings that are
denser than any lattice packing. See the standard reference [20].

Problem 19. Are the solutions of the regular problems in the calculus of variations alway's
necessarily analytic.
This problem links to the 20-th problem through the Euler-Lagrange equation of the

variational calculus. The variational problems meant are of the form: find a function w:Q — R
tht is of class C'(Q) " C°(Q) and is such that amoung all function of this class the integral

Iul= J'Q F(x,u(x), p(x))dx is minimal and satisfies a Dirichlet type boundary condition

u(x)=¢@(x) for xedQ.Here Q isabounded open setin R", Q isits closure, 0Q isits
boundary, and p(x)=(du/dx,,---,0u/dx,). The function F is given and satisfies the regularity

)
(and convexity) conditions Fe C* and oF >0.
op,9p j
The correponding Euer Lagrange equation is

n azu n
2i71=1 F;"P» (x,u,p) axiaxj + Zi:l(Fp,upi + F;»,x, ) = E;

Positive results on the analyticity for nonlinear elliptic partial equations were first obtained by S
N Bernshtejn in 1903 and in more or less definite form by I G Petrovskii (1937), [10, 81].

Problem 20. The general problem of boundary values.

In 1900, the general matter of boundary value problems and generalized solutions to
differential equations, as Hilbert wisely specified, was in its very beginning. The amount of work
accomplished since is enormous in achievement and volume and includes generalized solution
ideas (weak solutions) such as the distributions of Dirac, Sobolev and Schwartz (see [111]) and,
rather recently for the nonlinear case, generalized function algebras, [77, 92, 93] to get , among
other, around the problem that distributions do not have a good multiplication.

Problem 21. Proof of the existence of linear differential equations having a perscribed
monodromy group.

Consider a system of n first order linear differential equations y’(z) = A(z)y on the
Riemann sphere P' where A(z) is meromorphic. Let I be the set of poles of A(z). Such a
system has an n-dimensional space S of soltions. Following a solution along a loop around one
of the poles by analytic continuation gives a possibly different solution. This gives a
representation of the fundamental group 7,(P' \ £) = GL, (C), the monodromy representation

of the system of differential equations.

The question is now whether every representation of the fundamental group comes from a
system of differential equations where it is moreover required that all the poles of A(z) are
simple. For a long time it was thought that this was true by the work of L Plemelj, G Birkhoff, I
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Lappo-Danilevskij. But, in 1989 A. Bolibrukh found counterexamples. However, if extra
apparent singularities are allowed: singularities where the monodromy is trivial, there is a
positive solution, [2, 8].

As formulated by Hilbert the 21-st problem had to do with an n-th order linear differential
equation of Fuchsian type y"'+a,y"™" +.--+a,y = 0, which means that a, has at most a pole
of order i. Here the answer is again negative if no apparent singularities are allowed and positive
if this is allowed.

In the modern literature the question is studied in the form of connections on a bundle over
any Riemann surface or even in far more general situations, [26, 91].

Problem 22. Uniformization of analytic relations by means of automorphic functions.

This is the uniformization problem, i.e representing (most of) an algebraic or analytic
manifold parametrically by single-valued functions.

For instance (sin(z),cos(t)) and (—iz—i?%z——;—%) t and u complex variables, both
parametrize the Riemann surface of z* +w” =1.The (complex) dimension one case was solved
by H Poincaré and P Koebe in 1907 in the form of the Koebe general uniformization theorem
that a Riemann surface topologically equivalent to a domain in the extended complex plane is
also conformally equivalent to such a domain, and the Poincaré-Koebe theorem or Klein-
Poincaré uniformization theorem, see [41]. For higher (complex) dimension things are still
largely open and that also holds for a variety of generalizations, loc. cit. and [1, 14].

Problem 23. Further development of the methods of the calculus of variations.

As in problem 19 the problem is to find curves, surfaces, ... that minimize certain integrals.
Many problems is physics are formulated in terms of variational principles. Hilbert felt that the
calculus of variations had been somewhat neglected and had a number of precise ideas of how to
go further. Though there were already in 1900 a great many results in the calculus of variations,
[59], very much more has been developed since both as regards what may be termed the classical
calculus of variations, [33, 69], and numerous more modern offshoots such as: optimal control,
[66, 86] and dynamic programming, [9]; the calculus of variations in the large started by Marston
Morse, [71]; the theory of minimal differential geometric objects (geodesics, minimal surfaces,
Plateau problem), [22, 39, 79, 116]]; variational inequalities, [58] links with convex analysis,
[29]. Treating variational problems as optimization problems in infinite dimensional (function)
spaces brmos a unifying perspective, [54].

As is only natural the idea of having another new stimulating list of problems for the 21-first
century has arisen. There was such an attempt in 1974 at the occasion of the review of the then
current status of the Hilbert problems, and there are 27 groups of problems in the proceedings of
that meeting [14]. They do not seem to have been all that successful as a guide to research. More
recently, Stephen Smale formulated a list, [103]. Still more recently, the seven millenium
problems were formulated by the new Clay Institute of Mathematics, see [28] for a popular
account and go to <http://www.claymath.org> for the offcial descriptions of these seven
problems®. These seven are far more deeply imbedded in technically sophisticated mathematics
(except one). They are:

The Riemann hypothesis

Yang-Mills theory and the mass gap hypothesis

The P vs NP problem

The Navier-Stokes equations

The Poincaré conjecture

The Birch and Swinnerton-Dyer conjecture

The Hodge conjecture
Each of them carries prize money of 1 million dollars. It remains to be seen whether they will do
as much as is hoped to attract brilliant young people to research mathematics.

¥ Some of these descriptions are extraordinarily well written.
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Perhaps not. For much of the 20-th century there may have been a sort of general pervasive
feelmg thgt there is something like a vast, potentially complete, unique (rigid) edifice
comstituting mathematics. And perhaps that accounts for the feelings of (foundational) anxiety
that one senses when reading accounts of the progress of mathematics on the Hilbert problems.

Today seems to be less a period of problem solving, nor a period of large theory building.
Instead we seem to live in a period of discovery where new beautiful applications, interrelations
and phenomena appear with astonishing frequency. It is a multiverse of many different axiom
systems, of different models of even something as basic as the real numbers, of infinitely many
d@fferent differentially structures on the space-time, that we live in’. It is a world of many
different chunks of mathematics, not necessarily provably compatible, at least until we come up
with new ideas of what it means to be provable. Nor need all of mathematics to be compatible.
Meanwhile mathematicians go happily about the delightful business of discovering (or
inventing) and describing new beauty and insights.
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